Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dietrich Döpp, ${ }^{\text {a }}$ Claudia Kruse, ${ }^{\text {a }}$ Ulrich Flörke ${ }^{b_{*}}$ and Gerald Henkel ${ }^{\text {b }}$
${ }^{\text {a }}$ Organische Chemie, Universität DuisburgEssen, D-47048 Duisburg, Germany, and ${ }^{\mathbf{b}}$ Department Chemie, Fakultät für
Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany

Correspondence e-mail: ulrich.floerke@upb.de

Key indicators

```
Single-crystal X-ray study
\(T=150 \mathrm{~K}\)
Mean \(\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA\)
\(R\) factor \(=0.045\)
\(w R\) factor \(=0.112\)
Data-to-parameter ratio \(=17.6\)
```

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
rel-($1 R, 4 R, 9 R$)-1-Acetyl-9-(azepan-1-yl)-1,4-dihydro-1,4-ethanonaphthalene-9carbonitrile

The title molecule, $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$, shows elongated $\mathrm{C}-\mathrm{C}$ single bonds due to their thermal lability. In the crystal structure, the molecules are linked via intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming chains extended along [010].

Comment

In continuation of our study of regioselective (head-to-tail) photocycloadditions of 2-aminopropenenitriles [as (II)] to triplet excited 1-acetonaphthone (I) (Döpp \& Mlinaric, 1994a,b; Döpp et al., 2006a,b; Döpp, 2000), we present the crystal structure of the title compound, (IV).

Its molecular structure (Fig. 1) is related to that of the pyrrolidinyl compound (Döpp et al., 2006a) with azepan-1-yl instead of the pyrrolidinyl group, showing similar geometric features. The slight elongation of the highly restricted C7-C8 bond $[1.577(2) \AA$] in (IV) is the same as in the known piperidinyl compound (Döpp et al., 2006b) and agrees well with the thermal lability of this bond, e.g. in the thermal retro-Diels-Alder reaction of compound (IV) (Kruse, 2001). In the ethanonaphthalene unit, the mean planes $\mathrm{C} 7 / \mathrm{C} 10-\mathrm{C} 12(A)$, $\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 10(B)$ and $\mathrm{C} 7-\mathrm{C} 10(C)$ make dihedral angles A / B $=56.55(8)^{\circ}, A / C=61.11(7)^{\circ}$ and $B / C=62.34(8)^{\circ}$. The methoxy group is almost coplanar with $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$, the $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 13-\mathrm{O} 1$ torsion angle being $8.8(2)^{\circ}$. Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1) link the molecules into chains extended along [010] (Fig. 2).

Experimental

A solution containing 17.0 mmol each of 1-acetonaphthone [(I), 2.890 g] and 2-hexamethyleneiminopropenenitrile [(II), 2.550 g] in

Received 27 July 2006
Accepted 4 August 2006

Figure 1
The molecular structure of (IV). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The crystal packing of (IV), viewed along [101], with intermolecular hydrogen bonds indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted.

170 ml of cyclohexane was irradiated with a 125 W Philips HPK highpressure mercury lamp through a water-cooled immersion sleeve ($\lambda=$ 280 nm) with stirring and continuous argon purging to achieve 45% conversion after 8 h of irradiation. The oily residue obtained by concentration was vigorously stirred with hexane under ice cooling to precipitate all photoadducts while the residual starting materials remained dissolved in the mother liquor. The precipitate was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy and repeatedly crystallized from ethyl acetate/hexane (1:1) with cooling (ice/salt bath) to recover the main photoproduct (IV) (Kruse, 2001).

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=320.42$
Monoclinic, $P 2_{2} / c$
$a=13.362$ (4) A
$b=9.718$ (2) A
$c=13.757$ (4) \AA
$\beta=99.72$ (1) ${ }^{\circ}$
$V=1760.7(8) \AA^{3}$

$$
Z=4
$$

$D_{x}=1.209 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Prism, colourless
$0.56 \times 0.49 \times 0.46 \mathrm{~mm}$

Data collection

Siemens P4 rotating-anode
diffractometer
ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.940, T_{\text {max }}=0.967$
4023 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.112$
$S=1.02$
3860 reflections
219 parameters
H -atom parameters constrained

3860 independent reflections 2987 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=27.0^{\circ}$
3 standard reflections every 100 reflections intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0425 P)^{2}\right. \\
& +0.704 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.27 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0034 \text { (9) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.95	2.61	$3.358(2)$	136

Symmetry code: (i) $x, y-1, z$.

H atoms were located in difference Fourier maps and refined at idealized positions riding on the C atoms $(\mathrm{C}-\mathrm{H}=0.95-0.99 \AA)$, with isotropic displacement parameters $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}$ (methyl C). Methyl H atoms were allowed to rotate but not to tip.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

DD is indebted to Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie for generous support.

References

Bruker (2002). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Döpp, D. (2000). Organic, Physical and Materials Photochemistry (Molecular and Supramolecular Photochemistry, Vol. 6), edited by V. Ramamurthy \& K. S. Schanze, pp. 101-148. New York: Marcel Dekker.

Döpp, D., Kruse, C., Flörke, U. \& Henkel, G. (2006a). Acta Cryst. E62, o3245o3246.
Döpp, D., Kruse, C., Flörke, U. \& Henkel, G. (2006b). Acta Cryst. E62. Submitted.
Döpp, D. \& Mlinaric, B. (1994a). ACH - Models in Chemistry, 131, 377-381.
Döpp, D. \& Mlinaric, B. (1994b). Bull. Soc. Chim. Belg. 103, 449-452.
Kruse, C. (2001). Doctorate thesis, Duisburg University, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: © 2006 International Union of Crystallography All rights reserved

